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Abstract

We extend the definition of monotonicity given in [PS85] to higher dimensional
domains and establish a criterion which implies that a given domain is monotone with
respect to at least one direction in terms of an inequality involving the total absolute
Gauss-Kronecker curvature of its boundary. As a corollary of this result, we show that
all polygons with five or fewer sides are monotone.

1. Introduction

Let Ω be an open polygon in the plane, and let 𝜃 ∈ 𝕊1 be a direction vector. We say
that Ω is monotone with respect to 𝜃 if its intersection with every line ℓ orthogonal to
𝜃 is either empty or an interval in ℓ. Intuitively, this means one can completely “hatch”
the region with a pen without having to lift the pen for any hatch line, as shown in
Figure 1. Monotonicity is a kind of generalization of convexity: if Ω is convex, then it is
automatically monotone with respect to all directions. Typically, this notion is defined
for polygons in terms of the number of crossings of a line with the boundary of the
polygon, as done in [PS85]. The name is derived from the following fact (see [PS81]): if
Γ is polygon monotone with respect to a direction 𝜃, then the edges of Γ may be split
into two continguous chains of vertices 𝑣1,… , 𝑣𝑛 and 𝑤1,… ,𝑤𝑚 such that ⟨𝑣𝑖, 𝜃⟩ and
⟨𝑤𝑗, 𝜃⟩ are monotone in 𝑖 and 𝑗 respectively.

The definition of monotonicity may be extended to higher-dimensional domains
(open sets) as follows. If Ω ⊆ ℝ𝑛 is a bounded domain and 𝜃 ∈ 𝕊𝑛−1, we say that Ω is
monotone with respect to 𝜃 if its intersection with every hyperplane 𝐻 orthogonal to
𝜃 is either empty or a homeomorphic to the (𝑛 − 1)-ball 𝔹𝑛. In this note, we establish
criteria involving the boundary of a domain Ω which imply that it is monotone with
respect to some direction.

1.1. Preliminaries and Conventions
We establish some useful notation, terminology, and conventions. Let ℝℙ𝑛−1 be

the quotient of 𝕊𝑛−1 under the involution map 𝑥 ↦ −𝑥 for all 𝑥 ∈ 𝕊𝑛−1. Since a
domain Ω ⊆ ℝ𝑛 is monotone with respect to a direction 𝜃 ∈ 𝕊𝑛−1 if and only if it
is monotone with respect to −𝜃, we may say that Ω is monotone with respect to the
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Figure 1: The V-shaped domain above is monotonic horizontally (blue, vertical hatch lines), but
not vertically (red, horizonal hatch lines).

direction [𝜃] ∈ ℝℙ𝑛−1. The involution map on the sphere is an isometry, so the quotient
carries an induced Riemannian metric. Denote the quotient map by 𝜌 ∶ 𝕊𝑛−1 → ℝℙ𝑛−1,
which is a double cover and a local isometry.

For an smooth hypersurface 𝑀 ⊆ ℝ𝑛 bounding a domain, the Gauss map is a
surjective map 𝑛∶ 𝑀 → 𝕊𝑛−1 which maps a point 𝑝 ∈ 𝑀 to the (outward) normal
vector at 𝑝. By composing with the double cover, we obtain a map 𝜈 ∶ 𝑀 → ℝℙ𝑛−1

which we refer to as the projectivized Gauss map. The Gauss-Kronecker curvature of
𝑀 is the unique real function 𝐾 such that

𝑛∗𝜔 𝕊𝑛−1 = 𝐾 ⋅ 𝜔𝑀 , (1.1)

where 𝜔 𝕊𝑛−1 and 𝜔𝑀 are the volume forms of 𝕊𝑛−1 and 𝑀 , respectively. The absolute
Gauss-Kronecker curvature is given by Jacobian

|𝐾(𝑝)| = √det(d𝑛∗𝑝 ∘ d𝑛𝑝), (1.2)

where [⋅]∗ is the adjoint of a linear map between inner product spaces.
Finally, if Γ is a nondegenerate polygon, we use the convention that all exterior

angles are given in the range (−𝜋, 𝜋).

2. Monotone Domains

The main theorems of this paper rely on the following lemma which is analogous to
[PS81, Theorem 1], which concerns polygons in the plane. Although the result we give
fails to be a complete characterization of monotonicity in a given direction, it is enough
for the purposes of later arguments.
Lemma 2.1. Let Ω ⊆ ℝ𝑛 be a bounded domain with smooth boundary Γ, and let
𝜈 ∶ Γ → ℝℙ𝑛 be the projectivized Gauss map. If ∣𝜈−1{[𝜃]}∣ = 2 for some [𝜃] ∈ ℝℙ𝑛−1,
then Ω is monotone with respect to [𝜃].

Proof. Consider the projection 𝜋 ∶ ℝ𝑛 → ℝ defined by 𝜋(𝑥) = ⟨𝑥, 𝜃⟩ and let ℎ = 𝜋|Γ. At
a critical point 𝑝 of ℎ, we have

dℎ𝑝(𝑣) = ⟨𝑣, 𝜃⟩ = 0
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for all 𝑣 ∈ T𝑝Γ, which occurs if and only if 𝜈(𝑝) = [𝜃]. Since Γ is compact and not
contained in a line, ℎ attains a maximum and minimum at distinct points 𝑝+, 𝑝− ∈ Γ.
By hypothesis, the preimage of [𝜃] under 𝜈 contains two elements, so there are no other
critical values in (minℎ,maxℎ). By [Kam15, Theorem A], ℎ−1{𝑡} is homeomorphic to
𝕊𝑛−2 whenever 𝑡 is not an extreme value of ℎ. Therefore, by the generalized Schoenflies
theorem (see [Put25]), each slice Ω ∩ 𝜋−1{𝑡} is homeomorphic to 𝔹𝑛−1 whenever it is
nonempty. The conclusion follows. ■

We now prove the main theorems of the paper.
Theorem 2.2. Let Ω ⊆ ℝ𝑛 be a bounded domain with smooth boundary Γ. If the
total absolute Gauss-Kronecker curvature satisfies ∫Γ |𝐾| dΓ < 2 vol(𝕊𝑛−1), then Ω is
monotone with respect to some direction.

Proof. Let 𝑛∶ Γ → 𝕊𝑛−1 be the Gauss map and 𝜈 = 𝜌 ∘ 𝑛, where 𝜌 ∶ 𝕊𝑛−1 → ℝℙ𝑛−1 is
the projection map. Since 𝜌 is a local isometry, the absolute Gauss-Kronecker curvature
at a point 𝑝 ∈ Γ is given by the Jacobian

|𝐾(𝑝)| = √det(d𝑛∗𝑝 ∘ d𝑛𝑝) = √det(d𝜈∗𝑝 ∘ d𝜈𝑝) = |J𝑝𝜈|. (2.1)

Define 𝜇∶ ℝℙ𝑛−1 → ℕ>0 by 𝜇([𝜃]) = |𝜈−1{[𝜃]}|. Then by (2.1) and the smooth coarea
formula [Cha06], we have

1
vol(ℝℙ𝑛−1) ∫ℝℙ𝑛−1

𝜇dℝℙ𝑛−1 = 1
1
2 vol(𝕊𝑛−1) ∫Γ

|𝐾|dΓ < 4, (2.2)

so the average multiplicity of a direction [𝜃] ∈ ℝℙ𝑛−1 is strictly bounded above by 4.
Note that deg2(𝜈) = 0 since 𝜈 factors through a double cover. It follows that 𝜇 takes on
positive even values almost everywhere, so such an average is attained only if 𝜇([𝜃]) = 2
for some 𝜃 ∈ 𝕊𝑛−1. The conclusion follows from Lemma 2.1. ■

By applying a standard smoothing argument, one may obtain an analogous result
for polygons in the plane.
Theorem 2.3. Let Ω ⊆ ℝ2 be a domain with polygonal boundary Γ. If the sum of the
absolute values of the exterior angles of Γ is less than 4𝜋, then Ω is monotone with
respect to some direction.

Proof. Let 𝜙1,… , 𝜙𝑛 be the exterior angles of Γ. By “rounding” each of the corners of
Ω, one may obtain a sequence Ω𝑖 → Ω of domains with smooth boundaries Γ𝑖 such that
the multiplicities 𝜇𝑖 ∶ ℝℙ1 → ℕ>0 of the projectivized Gauss maps do not vary with 𝑖,
and

∫
Γ𝑖

|𝐾|dΓ𝑖 =
𝑛
∑
𝑘=1

|𝜙𝑘|. (2.3)

It follows from the proof of Theorem 2.2 that there exists a consistent direction [𝜃] for
which each Ω𝑖 is monotone. Then for a line ℓ normal to [𝜃], the slices Ω𝑖∩ℓ are intervals
which converge to Ω ∩ ℓ. Since the limit of a sequence of intervals is also an interval
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and Ω∩ℓ is open in ℓ, it must either be empty or homeomorphic to 𝔹1. The conclusion
follows. ■

As a corollary, one may show that every polygon with five or fewer sides is monotone
in at least one direction.
Corollary 2.4. Let Ω ⊆ ℝ2 be a domain with 𝑛-sided polygonal boundary. If 𝑛 ≤ 5,
then Ω is monotone with respect to some direction.

Proof. Let 𝜃1,… , 𝜃𝑛 ∈ (−𝜋, 𝜋) be the exterior angles of the boundary polygon. Suppose
that 𝑗 angles are nonnegative and 𝑘 angles are negative. Since the sum of exterior angles
is 2𝜋, we have

𝑛
∑
𝑖=1

|𝜃𝑖| = ∑
𝜃𝑖≥0

𝜃𝑖 − ∑
𝜃𝑖<0

𝜃𝑖 < 2𝜋min(𝑗 − 1, 𝑘 + 1) ≤ 4𝜋, (2.4)

so Ω is monotone with respect to some direction. ■

𝑞

Figure 2: A hexagon which is not monotonic with respect to any direction. Lines through the
centroid 𝑞 may be shifted to intersect the boundary in more than two points.

This result is sharp. For example, the hexagon in Figure 2 is not monotone with
respect to any direction. Indeed, any line through 𝑞 not passing through the “slit” must
intersect the boundary in four points. On the other hand, any line through 𝑞 passing
through the slit may be translated left or right to achieve the same result.
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