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Abstract

We extend the definition of monotonicity given in [PS85] to higher dimensional
domains and establish a criterion which implies that a given domain is monotone with
respect to at least one direction in terms of an inequality involving the total absolute
Gauss-Kronecker curvature of its boundary. As a corollary of this result, we show that
all polygons with five or fewer sides are monotone.

1. Introduction

Let Q be an open polygon in the plane, and let § € S! be a direction vector. We say
that Q is monotone with respect to 0 if its intersection with every line £ orthogonal to
0 is either empty or an interval in £. Intuitively, this means one can completely “hatch”
the region with a pen without having to lift the pen for any hatch line, as shown in
Figure 1. Monotonicity is a kind of generalization of convexity: if (2 is convex, then it is
automatically monotone with respect to all directions. Typically, this notion is defined
for polygons in terms of the number of crossings of a line with the boundary of the
polygon, as done in [PS85]. The name is derived from the following fact (see [PS81]): if
I" is polygon monotone with respect to a direction 6, then the edges of I' may be split

into two continguous chains of vertices vy, ...,v,, and wy, ..., w,, such that (v,;,6) and

m
(w;, 0) are monotone in i and j respectively.

The definition of monotonicity may be extended to higher-dimensional domains
(open sets) as follows. If 2 C R™ is a bounded domain and 6 € S"~!, we say that Q is
monotone with respect to 6 if its intersection with every hyperplane H orthogonal to
0 is either empty or a homeomorphic to the (n — 1)-ball B™. In this note, we establish
criteria involving the boundary of a domain {2 which imply that it is monotone with

respect to some direction.

1.1. Preliminaries and Conventions

We establish some useful notation, terminology, and conventions. Let RP"~! be
the quotient of S”! under the involution map = +— —z for all z € S"!. Since a
domain Q C R™ is monotone with respect to a direction § € S"~! if and only if it
is monotone with respect to —6, we may say that € is monotone with respect to the
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Figure 1: The V-shaped domain above is monotonic horizontally (blue, vertical hatch lines), but
not vertically (red, horizonal hatch lines).

direction [#] € RP"!. The involution map on the sphere is an isometry, so the quotient
carries an induced Riemannian metric. Denote the quotient map by p: S*~1 — RP" 1,
which is a double cover and a local isometry.

For an smooth hypersurface M C R™ bounding a domain, the Gauss map is a
surjective map n: M — S"! which maps a point p € M to the (outward) normal
vector at p. By composing with the double cover, we obtain a map v: M — RP?!
which we refer to as the projectivized Gauss map. The Gauss-Kronecker curvature of
M is the unique real function K such that

N'wen1 = K -wyy, (1.1)

where wg.-1 and w,, are the volume forms of S"~! and M, respectively. The absolute
Gauss-Kronecker curvature is given by Jacobian

|K (p)| = y/det(dns o dn,), (1.2)

where [-]* is the adjoint of a linear map between inner product spaces.
Finally, if I" is a nondegenerate polygon, we use the convention that all exterior
angles are given in the range (—m, 7).

2. Monotone Domains

The main theorems of this paper rely on the following lemma which is analogous to
[PS81, Theorem 1], which concerns polygons in the plane. Although the result we give
fails to be a complete characterization of monotonicity in a given direction, it is enough
for the purposes of later arguments.

Lemma 2.1. Let Q@ C R” be a bounded domain with smooth boundary I', and let
v: T — RP™ be the projectivized Gauss map. If [v=*{[0]}] = 2 for some [0] € RP",
then Q is monotone with respect to [6].

Proof. Consider the projection 7: R™ — R defined by n(z) = (z,0) and let h = 7|p. At
a critical point p of h, we have

dh,(v) = (v,0) =0
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for all v € T,T', which occurs if and only if v(p) = [#]. Since I' is compact and not
contained in a line, h attains a maximum and minimum at distinct points p_,p_ € I
By hypothesis, the preimage of [f] under v contains two elements, so there are no other
critical values in (minh, maxh). By [Kam15, Theorem A], h~*{t} is homeomorphic to
S"~2 whenever t is not an extreme value of h. Therefore, by the generalized Schoenflies
theorem (see [Put25]), each slice @ N 7w~ 1{t} is homeomorphic to B"~! whenever it is
nonempty. The conclusion follows. |

We now prove the main theorems of the paper.

Theorem 2.2. Let Q C R™ be a bounded domain with smooth boundary T'. If the
total absolute Gauss-Kronecker curvature satisfies fr |K|dT < 2vol(S™1), then Q is
monotone with respect to some direction.

Proof. Let n: T' — S™ ! be the Gauss map and v = p o n, where p: S* ! — RP" ! is
the projection map. Since p is a local isometry, the absolute Gauss-Kronecker curvature
at a point p € I is given by the Jacobian

K (p)] = y/det(dnj, o dn,,) = 1 /det(dv} o dv,) = |,v]. (2.1)

Define p: RP" 1 — N_, by u([0]) = |[v"1{[6]}|. Then by (2.1) and the smooth coarea
formula [Cha06], we have

1 1
- dRP-1! — —/ K|dT < 4, 2.2
vol(RP»~1) /R]P,n1 a 3 vol(S1) Jp K] (22)

so the average multiplicity of a direction [#] € RP™! is strictly bounded above by 4.
Note that deg,(v) = 0 since v factors through a double cover. It follows that ; takes on
positive even values almost everywhere, so such an average is attained only if px([0]) = 2
for some 6 € S*~!. The conclusion follows from Lemma 2.1. |

By applying a standard smoothing argument, one may obtain an analogous result
for polygons in the plane.

Theorem 2.3. Let Q C R? be a domain with polygonal boundary T'. If the sum of the
absolute values of the exterior angles of I' is less than 4w, then §) is monotone with

respect to some direction.

Proof. Let ¢4, ..., ¢, be the exterior angles of I'. By “rounding” each of the corners of
2, one may obtain a sequence §2; — {2 of domains with smooth boundaries I'; such that
the multiplicities p;: RP! — N_, of the projectivized Gauss maps do not vary with 4,

/F K| dD, =S [0y, (2.3)

k=1

and

It follows from the proof of Theorem 2.2 that there exists a consistent direction [6] for
which each ©, is monotone. Then for a line £ normal to [6], the slices 2, N ¢ are intervals
which converge to £ N £. Since the limit of a sequence of intervals is also an interval
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and 2N/ is open in ¢, it must either be empty or homeomorphic to B'. The conclusion
follows. u

As a corollary, one may show that every polygon with five or fewer sides is monotone

in at least one direction.

Corollary 2.4. Let Q C R? be a domain with n-sided polygonal boundary. If n < 5,
then 2 is monotone with respect to some direction.

Proof. Let 0, ...,0, € (—m, ) be the exterior angles of the boundary polygon. Suppose
that j angles are nonnegative and k angles are negative. Since the sum of exterior angles

is 2w, we have

n

S16;1=>"0,—> 6, <2rmin(j— 1,k +1) < 4r, (2.4)

i=1 0,>0 6,<0
so {2 is monotone with respect to some direction. |
T

Figure 2: A hexagon which is not monotonic with respect to any direction. Lines through the
centroid ¢ may be shifted to intersect the boundary in more than two points.

This result is sharp. For example, the hexagon in Figure 2 is not monotone with
respect to any direction. Indeed, any line through ¢ not passing through the “slit” must
intersect the boundary in four points. On the other hand, any line through ¢ passing
through the slit may be translated left or right to achieve the same result.
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